Generalized Discriminant Orthogonal Nonnegative Tensor Factorization for Facial Expression Recognition

نویسندگان

  • Zhang XiuJun
  • Liu Chang
چکیده

In order to overcome the limitation of traditional nonnegative factorization algorithms, the paper presents a generalized discriminant orthogonal non-negative tensor factorization algorithm. At first, the algorithm takes the orthogonal constraint into account to ensure the nonnegativity of the low-dimensional features. Furthermore, the discriminant constraint is imposed on low-dimensional weights to strengthen the discriminant capability of the low-dimensional features. The experiments on facial expression recognition have demonstrated that the algorithm is superior to other non-negative factorization algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving LNMF Performance of Facial Expression Recognition via Significant Parts Extraction using Shapley Value

Nonnegative Matrix Factorization (NMF) algorithms have been utilized in a wide range of real applications. NMF is done by several researchers to its part based representation property especially in the facial expression recognition problem. It decomposes a face image into its essential parts (e.g. nose, lips, etc.) but in all previous attempts, it is neglected that all features achieved by NMF ...

متن کامل

Subclass discriminant Nonnegative Matrix Factorization for facial image analysis

Nonnegative Matrix Factorization (NMF) is among the most popular subspace methods, widely used in a variety of image processing problems. Recently, a discriminant NMF method that incorporates Linear Discriminant Analysis inspired criteria has been proposed, which achieves an efficient decomposition of the provided data to its discriminant parts, thus enhancing classification performance. Howeve...

متن کامل

A Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem.  At each step of ALS algorithms two convex least square problems should be solved, which causes high com...

متن کامل

Robust Speaker Modeling Based on Constrained Nonnegative Tensor Factorization

Nonnegative tensor factorization is an extension of nonnegative matrix factorization(NMF) to a multilinear case, where nonnegative constraints are imposed on the PARAFAC/Tucker model. In this paper, to identify speaker from a noisy environment, we propose a new method based on PARAFAC model called constrained Nonnegative Tensor Factorization (cNTF). Speech signal is encoded as a general higher ...

متن کامل

Tensor decompositions for feature extraction and classification of high dimensional datasets

Feature extraction and selection are key factors in model reduction, classification and pattern recognition problems. This is especially important for input data with large dimensions such as brain recording or multiview images, where appropriate feature extraction is a prerequisite to classification. To ensure that the reduced dataset contains maximum information about input data we propose al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014